

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 16 (2005) 2067-2070

Tetrahedron: Asymmetry

Synthesis of optically active (+)-2-benzyl-, (+)-2-octyl-, and (+)-2-tetradec-5'-enylcyclobutanones via metallated chiral imines or hydrazones

Damien Hazelard and Antoine Fadel*

Laboratoire des Carbocycles (Associé au CNRS), Institut de Chimie Moléculaire et des Matériaux d'Orsay Bât. 420, Université Paris-Sud, 91405 Orsay, France

> Received 14 April 2005; accepted 19 April 2005 Available online 31 May 2005

Abstract—A practical asymmetric synthesis of (R)-2-benzyl-, (S)-2-octyl-, and (S)-2-tetradec-5'-enylcyclobutanones was investigated using enantiopure (S)- α -methylbenzylamine, (R)-methoxymethylbenzylamine, or hydrazine (RAMP). These amines were treated with cyclobutanone to afford the corresponding imines or hydrazones, respectively. Metallation of these imine derivatives followed by alkylation with *n*-octylbromide, benzylbromide, or tetradec-5-enylbromide gave, after hydrolysis, (S)-2-octylcyclobutanone and for the first time optically active (R)-2-benzylcyclobutanone and (S)-2-tetradec-5'-enylcyclobutanone (TECB) with 67–87% ee. The absolute configuration was also established.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis of optically active α -substituted cyclobutanones via asymmetric reactions has not received much attention. Only a few methods occurring through a ring enlargement of hydroxycyclopropylcarbinol¹ or spiropentane derivatives^{2a,b} or with chirality transfer.^{2c} Poor to good enantiomeric excesses were generally obtained.

Over the course of our work on the asymmetric synthesis of cyclic analogues of naturally occurring α -amino acids,³ we have previously published the aminocyclobutanecarboxylic acids 1⁴ prepared from readily available racemic α -substituted cyclobutanones 2.^{4,5} We had already prepared enantiopure α -alkoxycyclobutanones 3 by an enzyme-catalyzed transesterification.⁶

* Corresponding author. Tel.: +33 (1) 6915 7252; fax: +33 (1) 6915 6278; e-mail: antfadel@icmo.u-psud.fr

0957-4166/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2005.04.012

In connection with our ongoing program, we report herein the asymmetric alkylation of *N*-cyclobutylidene amines or hydrazone derivatives **5**, an easy to perform and efficient route to enantiomerically enriched 2alkylcyclobutanones **2** via the corresponding imines **6** (Scheme 1). Only very recently a synthesis of racemic 2-alkylated cyclobutanones was published,⁷ and used as markers for irradiated foodstuffs.⁸

Scheme 1.

2. Results and discussion

Commercially available cyclobutanone **4** was converted into *N*-(cyclobutylidene)-amine or hydrazone **5** by reaction with (*S*)- α -methylbenzylamine **7A** (1 equiv) or (*R*)-**7B** (Scheme 2) in diethyl ether in the presence of triethylamine (2.5 equiv) and stoichiometric amounts of titanium(IV) chloride, while with RAMP-**7C**,⁹ simple heating was enough to give the hydrazone **5C**. Without purification, the cyclobutanone imine derivatives **5**¹⁰

Scheme 2.

were deprotonated with LDA (or NaHMDS) in THF at -78 °C and the resulting 1-azaallylic anion intermediates were reacted with various alkylbromides to afford the corresponding *N*-2-alkyl-1-cyclobutylidene amines **6**. The later crude imines **6** were hydrolyzed with aqueous oxalic acid from -78 °C to room temperature giving enantiomerically enriched 2-alkylcyclobutanones **2** in good yields and high enantiomeric excesses (Table 1).

First, the asymmetric alkylation¹¹ of imine **5A** (prepared from cyclobutanone 4 and amine 7A) conducted with LDA at -78 °C for 1 h, then addition of benzylbromide at -78 °C to room temperature, gave 2-benzylcyclobutanone 2a with moderate yield and poor enantiomeric excess (Table 1, entry 1). Improved results were achieved by using amines 7B and 7C, which gave 2a with 44% and 76% ee, respectively (Table 1, entries 2 and 3). Furthermore, increasing the reaction time of LDA at -78 °C (4 h instead of 1 h) before adding benzylbromide, enhanced both the yield and the enantioselectivity of the resulting 2-benzylcyclobutanone (*R*)-2a { $[\alpha]_D = +124$ (*c* 1, CHCl₃), 79% ee} (entry 4). However, using NaHMDS as base does not give a better result (entry 5). On the other hand, upon treatment with octylbromide or tetradec-5-enylbromide,^{7c} hydrazone **5C** gave under the same conditions 2-octylcyclobutanone (S)-2b or 2-tetradec-5'envlcyclobutanone (S)-(+)-2c, respectively, with good yields and high enantiomeric excesses $\{[\alpha]_D = +42.7 \ (c$ 1, CHCl₃), 88% ee} (Table 1, entries 6 and 7), and $\{[\alpha]_{D} = +22.7 \ (c \ 0.4, CHCl_{3}), 67\% \ ee\}$ (Table 1, entry 8).

The (S) absolute configuration of (+)-2b was assigned by comparison of its specific rotation with that of literature (R)-(-)-2b.^{1d,e} However, the (R) absolute configuration of (+)-2a (benzyl group), unknown in enantiomerically enriched form, was assigned by analogy to the alkylation product (+)-(S)-2b (octyl group), which must have, under the same conditions, the same geometry but reverse absolute configuration (compare in Table 1, entries 4 and 7). Likewise, the absolute configuration of (+)-2c must be (S).

We therefore observed that the (*R*)-benzylcyclobutanone $2a^{7b,12}$ underwent a slow epimerization on standing at 20 °C for 3 days (from 80% to 15% ee). However it was stable under acidic conditions (oxalic acid, 20 °C, 3 days).

It is noteworthy that the alkylation of **5A** at -78 °C with LDA, and BnBr followed by treatment in situ of the resulting **6A.a** with LDA (1 equiv), then hydrolysis with guaiacol¹³ or oxalic acid does not give the expected (*R*)-**2a**, but benzylcyclobutanone (*S*)-**2a** (with 24% ee), thus, indicating that no deprotonation of **6A.a** occurred under these conditions (Scheme 3).

A plausible mechanism can be explained for this asymmetric alkylation. As shown in Figure 1, deprotonation of RAMP-hydrazone **5C** with lithium diisopropylamide results in azaenolate **8C**, a conformationally rigid and chelated $E_{\rm CC}, Z_{\rm CN}$ structure.^{11c} Electrophilic attack on this rigid intermediate proceeding under high diastereo-facial differentiation, leads to alkylcyclobutanone (*R*)- or (*S*)-**2** in high enantiomeric purity. These results are in agreement with those given by Enders and Eichenauer.^{11d} While from enamine **5B**, the rigid intermediate **8B** providing favorable *re* face approach of the electrophile, gives the antipode (*S*)- or (*R*)-(-)-**2** but in a moderate enantioselectivity.

_	5	$\frac{1) \text{ Ba}}{2) \text{ RX}}$	se, THF, -78 °C , -78 °C → -50 °C DOH) ₂	(+)- 2	(+)- 2a : R = Bn (<i>R</i> (+)- 2b : R = Oct (<i>S</i> (+)- 2c : R = tetrade) and ant 5) ecenyl (<i>S</i>)	ipodes		
Entry	H_2NR^*	NR* Base RX			2-Alkylcyclobutanones				
				2	Yield (%)	$[\alpha]_{D}$	Abs. conf.	Ee ^a (%)	
1	(S)-7A	LDA	PhCH ₂ -Br	2a	42	-37.7	<i>(S)</i>	24	
2	(R)-7 B	LDA	PhCH ₂ -Br	2a	41	-69	(S)	44	
3	(R)-7C	LDA	PhCH ₂ -Br	2a	25	+119	(R)	76	
4	(R)-7C	LDA ^b	PhCH ₂ -Br	2a	64	+124	(R)	79	
5	(R)-7C	NaHMDS	PhCH ₂ -Br	2a	24	ND^{d}	(R)	66	
6	(R)-7C	LDA	C ₈ H ₁₅ –Br	2b	50	+42.7	$(S)^{c}$	87	
7	(<i>R</i>)-7C	LDA ^b	C ₈ H ₁₅ –Br	2b	65	+39.1	$(S)^{c}$	79.6	
8	(R)-7C	LDA ^b	C ₁₄ H ₂₇ -Br ^e	2c	35	+22.7	(S)	67	

.0

 Table 1. Asymmetric alkylation of imines 5 under various conditions

 N-B*

^a Enantiomeric excesses were measured by GC analysis using chiral column (β -cyclodextrine DM).

^b LDA was reacted with imine of cyclobutanone at -78 °C for 4 h before adding alkylbromide.

^c The absolute configuration was assigned by comparison to the known product 2b (Ref. 1d,e).

^d ND: not determined.

^e Z-Tetradec-5-enylbromide.

Scheme 3. Attempt to improve enantiomeric excess by double LDA treatment.

Figure 1. Proposed mechanism of enamine cyclobutanone alkylation.

3. Conclusion

We have developed a practical asymmetric alkylation for the synthesis of (*R*)-benzyl-, (*S*)-octyl-, and (*S*)-tetradec-5'-enylcyclobutanones or antipodes with reasonably good yields and high enantiomeric excesses up to 87%, thus providing the first preparation of optically active 2-benzyl- and 2-tetradec-5'-enylcyclobutanones.¹⁴ This approach should constitute a complementary method to our enzymatic reaction⁶ for preparing several optically active cyclobutanones used in the synthesis of enantiopure aminocyclobutanecarboxylic acids,⁴ which is currently in progress in our laboratory.

References

- For optically active cyclobutanones, see (a) Fitjer, L. Cyclobutanes. In Synthesis: by Ring Enlargement In Houben-Weyl (Methods of Organic Chemistry); de Meijere, A., Ed.; Thieme: Stuttgart, 1997; Vol. E 17e, p 251; (b) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449; (c) Nemoto, H.; Miyata, J.; Hakamara, H.; Fukumoto, K. Tetrahedron Lett. 1995, 36, 1055; (d) Nemoto, H.; Miyata, J.; Hakamara, H.; Nagamochi, M.; Fukumoto, K. Tetrahedron 1995, 51, 5511, and references cited therein; (e) Krief, A.; Ronvaux, A.; Arounarith, T. Tetrahedron 1998, 54, 6903; (f) Cho, S. Y.; Cha, J. K. Org. Lett. 2000, 2, 1337.
- (a) Yoshida, M.; Ismail, M. A. H.; Nemoto, H.; Ihara, M. J. Chem. Soc., Perkin Trans. 1 2000, 2629; (b) Bernard, A. M.; Frangia, A.; Piras, P. P.; Secci, F. Org. Lett. 2003, 5, 2923; (c) Ollivier, J.; Legros, J.-Y.; Fiaud, J. C.; de Meijere, A.; Salaün, J. Tetrahedron Lett. 1990, 31, 4135.
- (a) Fadel, A.; Khesrani, A. *Tetrahedron: Asymmetry* 1998, 9, 305; (b) Fadel, A.; Tesson, N. *Eur. J. Org. Chem.* 2000, 2153; (c) Tesson, N.; Dorigneux, B.; Fadel, A. *Tetrahedron: Asymmetry* 2002, *13*, 2267.
- 4. Truong, M.; Lecornué, F.; Fadel, A. Tetrahedron: Asymmetry 2003, 14, 1053, and references cited therein.
- 5. Salaün, J.; Fadel, A.; Conia, J. M. *Tetrahedron Lett.* **1979**, 1429.

- 6. Hazelard, D.; Fadel, A.; Morgant, G. Tetrahedron: Asymmetry 2004, 15, 1711.
- (a) Miesch, M.; Miesch, L.; Horvatovich, P.; Burnouf, D.; Delincée, H.; Hartwig, A.; Raul, F.; Werner, D.; Marchioni, E. *Radiat. Phys. Chem.* 2002, 65, 233; (b) Nordvik, T.; Brinker, U. H. J. Org. Chem. 2003, 68, 9394; (c) Verniest, G.; Boterberg, S.; Colpaert, J.; Van Thienen, T.; Stevens, C. V.; De Kimpe, N. Synlett 2004, 1273.
- (a) Ndiaye, B.; Jamet, G.; Miesch, M.; Hasselmann, C.; Marchioni, E. *Radiat. Phys. Chem.* **1999**, *55*, 437; (b) Le Tellier, P. R.; Nawar, W. W. *Lipids* **1972**, *7*, 75.
- 9. (a) Commercially available or prepared following Enders, D.; Eichenauer, H.; Pieter, R. *Chem. Ber.* **1979**, *112*, 3703; (b) Enders, D.; Eichenauer, H.; Bauss, U.; Schubert, H.; Kremer, K. A. M. *Tetrahedron* **1984**, *40*, 1345.
- 10. (a) Data for crude 5A: ¹H NMR (CDCl₃): δ 1.47 (d, J = 6.5 Hz, 3H), 1.80–2.10 (m, 2H), 2.75–3.15 (m, 4H), 4.42 (q, J = 6.5 Hz, 1H), 7.13–7.46 (m, 5H); ¹³C NMR (CDCl₃): δ 13.1 (C₃), 24.3 (CH₃), 34.6 (C₄), 37.9 (C₂), 60.2 (C1'), [6 arom. C: 126.6 (2C), 126.7 (1C), 128.3 (2C), 145.2 (1C)], 170.9 (C=N). (b) Data for crude **5B**: ¹H NMR (CDCl₃): δ 1.82–2.08 (m, 2H), 2.66–2.86 (m, 1H), 2.86–3.20 (m, 3H), 3.37 (s, 3H), 3.60 (dd, J = 4.5, 9.3 Hz, 1H), 3.70 (dd, J = 8.3, 9.3 Hz, 1H), 4.465 (dd, J = 4.5, 8.3 Hz, 1H), 7.20–7.45 (m, 5H); ¹³C NMR (CDCl₃): δ 13.0 (C₃), 35.2 (C₄), 38.0 (C₂), 59.0 (CH₃), 65.0 (CH-N), 78.0 (CH₂-O), [6 arom. C: 127.1 (1C), 127.3 (2C), 128.3 (2C), 140.9 (1C)], 173.9 (C=N). (c) Data for crude 5C: ¹H NMR (CDCl₃): δ 1.55–1.74 (m, 1H), 1.74–2.10 (m, 5H), 2.42–2.74 (m, 1H), 2.80–3.21 (m, 4H), 3.22–3.40 (m, 3H), 3.38 (s, 3H, CH₃), 3.54 (dd, J = 3.7, 9.3 Hz, 1H, CH₂O); ¹³C NMR (CDCl₃): δ 14.0 (C₃), 22.3 (t), 25.9 (t), 35.1 (C₄), 36.0 (C₂), 53.4 (t), 59.1 (q), 65.7 (d), 75.1 (t), 154.9 (C₁).
- Stereoselective alkylation was reported for cyclopentanone and cyclohexanone: see (a) Kitamato, M.; Hiroi, K.; Terashima, S.; Yamada, S. *Chem. Pharm. Bull.* 1974, 22, 459; (b) Meyers, A. I.; Williams, D. R.; Druelinger, M. J. *Am. Chem. Soc.* 1976, 98, 3032; For the SAMP-/RAMPhydrazone methodology in asymmetric synthesis: see (c) Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. *Tetrahedron* 2002, 58, 2253; (d) Enders, D.; Eichenauer, H. *Chem. Ber.* 1979, 112, 2933.
- 12. For the synthesis of racemic 2-benzylcyclobutanone: see Ref. 7b and (a) Bekolo, H.; Howell, A. R. New. J. Chem.

2001, 25, 673; (b) Molander, G.; McKie, J. A. J. Org. Chem. **1993**, 58, 7216; (c) Cohen, T.; Yu, L.-C.; Daniewski, W. M. J. Org. Chem. **1985**, 50, 4596.

- 13. Navarre, L.; Darses, S.; Genêt, J. P. Angew. Chem., Int. Ed. 2004, 43, 719.
- 14. General asymmetric alkylation procedure: To a cooled solution (-78 °C) of crude imine or hydrazone 5 [1 mmol, prepared from cyclobutanone 4 (1.2 mmol) and amines or hydrazine 7 (1 mmol)] in THF (3 mL), was added dropwise a solution of LDA (2.2 mmol). The mixture was stirred at -78 °C for 4 h, then alkylbromide (2 mmol) was added at -78 °C, stirred at -78 °C (3 h), warmed up to -50 °C (3 h), and recooled at -78 °C (14 h). The cold resulting mixture (-78 °C) was hydrolyzed with an aqueous saturated solution of oxalic acid (3 mL) and ether (3 mL), with stirring at -78 °C (5 min) then at room temperature for 24 h. The mixture was extracted with ether $(3 \times 30 \text{ mL})$, and the organic layer was dried (MgSO₄), filtered, and then concentrated under partial vacuum (30 °C, P > 200 mmHg). The residue was purified by chromatography on silica gel column (eluent, etherpentane, $5/95 \rightarrow 1/9$) to give pure 2-alkylcyclobutanone 2 (as noted in Table 1).

(a) Data for (*R*)-(+)-2-benzylcyclobutanone (*R*)-**2a**: $[\alpha]_{D} = +119$ (*c* 0.6, CHCl₃) (76% ee), $R_{f} = 0.50$ (etherpentane, 2/8), $t_{R}(R) = 38.48$ min; $t_{R}(S) = 37.66$ min (cyclodextrine DM, 145 °C, 0.5 bar); ¹H NMR (CDCl₃): δ 1.50– 1.95 (m, 1H), 2.09–2.30 (m, 1H), 2.54–3.18 (m, 2H), 2.84 (A part of ABC system, $J_{AB} = 14.5$ Hz, $J_{AC} = 9.1$ Hz, 1H_{benzyl}), 3.06 (B part of ABC system, $J_{AB} = 14.5$ Hz, $J_{\rm BC} = 5.5 \text{ Hz}, 1H_{\rm benzyl}, 3.50-3.71 \text{ (m, 1H)}, 7.10-7.40 \text{ (m, 5H)}; {}^{13}\text{C} \text{ NMR (CDCl}_3): \delta 16.6 \text{ (C}_3), 35.1 \text{ (C}_{1'}), 44.5 \text{ (C}_4), 61.2 \text{ (C}_2), [6 arom. C: 126.3 (1C), 128.5 (2C), 128.7 (2C), 138.8 (1C)], 211.5 \text{ (C}_1); IR (neat): v 3086 cm^{-1}, 3028, 2923, 1778 (C=O), 1603, 1496, 1454; MS (EI)$ *m/z*: 160 (M⁺, 39), 131 (30), 118 (60),*117*(100), 104 (27), 91 (36).

(b) Data for (*S*)-(+)-2-octylcyclobutanone (*S*)-**2b**: $[\alpha]_D =$ +39.1 (*c* 1, CHCl₃) (79.6% ee) {lit. for (*R*)-**2b**: $[\alpha]_D =$ -32 (*c* 0.56, CHCl₃) 64% ee}, ^{1e} $R_f = 0.57$ (ether–pentane,1/9), $t_R(S)$) = 72.11 min; $t_R(R) =$ 71.02 min (cyclodextrine DM, 125 °C, 0.5 bar); ¹H NMR (CDCl₃): δ 0.87 (t, *J* = 6.6 Hz, 3H), 1.10–1.55 (m, 14H), 1.55–1.80 (m, 1H–C₃), 2.05–2.29 (m, 1H–C₃), 2.79–3.15 (m, 2H–C₄), 3.15–3.88 (m, 1H–C₂); ¹³C NMR (CDCl₃): δ 14.1 (CH₃), 16.9 (C₃), 22.6, 27.0, 29.2, 29.4, 29.45, 29.5, 31.8, 44.4 (C₄), 60.6 (C₂), 212.6 (C₁); IR (neat): *v* 2926 cm⁻¹, 1782 (C=O), 1466; MS (EI) *mlz*: 182 (M⁺, 1), 164 (3), 112 (20), 98 (100), 84 (31), 83 (27).

(c) Data for (*S*)-(+)-2-(tetradec-5-enyl)-cyclobutanone (*S*)- **2c**: $[\alpha]_D = +22.7$ (*c* 0.4, CHCl₃) (67% ee) $R_f = 0.58$ (etherpentane, 2/8), $t_R(S)$) = 267.54 min; $t_R(R)$ = 264.39 min (cyclodextrine DM, 145 °C, 1 bar); ¹H NMR (CDCl₃): δ 0.88 (t, J = 6.6 Hz, 3H), 1.16–1.56 (m, 17H), 1.56–1.84 (m, 2H), 1.84–2.09 (m, 4H), 2.09–2.30 (m, 1H–C₃), 2.77–3.13 (m, 2H–C₄), 3.15–3.88 (m, 1H–C₂), 5.20–5.36 (m, 2H_{olefin}); ¹³C NMR (CDCl₃): δ 14.1 (CH₃), 16.9 (C₃), 22.7, 26.7, 27.0, 27.2, 29.3 (2C), 29.4, 29.5 (2C), 29.7, 31.9, 44.4 (C₄), 60.6 (C₂), 129.3 (C=C), 130.2 (C=C), 212.2 (C₁); IR (neat): v 2926 cm⁻¹, 1782 (C=O), 1645 (C=C), 1463.